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The plane-parallel motion of the particles of an incompressible medium reduces to an investigation of a Hamilton system. The 
stream function is a Hamilton function. A Hamilton function, which depends periodically on time and corresponds to the agitation 
of an incompressible medium in a domain which varies periodically with time, is considered. This agitation of the medium is 
due to dynamic chaos. The transition to dynamic chaos is described by investigating the location of the Lagrangian particles over 
time intervals which are multiples of the period (Poincar6 points (PP)). The set of PP can be obtained using a Poincar6 mapping 
in the phase flow. The method which has been developed is used to investigate the plane-parallel motion of the particles in an 
incompressible fluid in a thin layer, bounded by a flat bottom, rectilinear side walls and an upper boundary which is deformed 
according to a specified periodic law. The motion of the particles is determined from Hamilton's system of equations. The 
Hamiltonian (the stream function) is found in the thin-layer approximation and depends on two dimensionless parameters: the 
amplitude of deformation and the tangential velocity in the deforming boundary. The characteristic boundary, which separates 
the domain of the chaotic motion of the PP from the domain of ordered motion, is determined numerically in the domain of 
the two parameters. The topological structure of the phase trajectories up to the transition to chaotic conditions is analysed using 
the Poincar6 mapping, found with an accuracy up to the third order with respect to the amplitude. The phase trajectories of the 
PE found analytically, turn out to be close to the trajectories of the initial Hamilton system, determined numerically. The mapping 
found in the domain of the two dimensionless parameters enables one to determine, qualitatively, the boundary of the transition 
to chaos. © 2003 Elsevier Science Ltd. All rights reserved. 

It is well known [1, 2] that generating functions enable one to construct the mappings which are achieved 
by the phase flow of a Hamilton system. An alternative method of constructing these mappings in 
parametric form is proposed below. A mapping (X0, Y0) ~ (X, Y), with a Jacobian equal to unity, is 
written out parametrically in the form (X0, Y0) ~ (x, y) ~ (X, Y) and expressed in terms of the function 
U/(x, y) of the parameters x and y. An equation of the Jacobi type is obtained for a mapping which is 
achieved by the phase flow of a Hamilton system. In the case of Hamilton systems of standard form, 
the solution for • is represented in the form of a power series which converges with respect to a small 
parameter. 

The parametric method has a number of advantages over the classical method of generating functions 
in exactly integrable cases. There is significantly better convergence of the power series for the function 
• , the corresponding approximations are found to the simpler, and the accuracy is significantly higher 
compared with the analogous classical results. It is proved that, in the case of an autonomous Hamilton 
system, the power series in a small parameter for te does not contain even powers. 

The Cauchy problem 

1. I N T R O D U C T I O N  

X=Hy, Y=-Hx, X(t0) =X0, Y(t0) =Y0 

H x = OH/OX, H v = OH/OY (1.1) 

for a Hamilton system of equations with n degrees of freedom is considered, where H(t ,  X, Y) = 
H(t  + T, X, Y) is an arbitrary, sufficiently smooth, T-periodic function and X, Y are n-dimensional vectors. 

At present there is no generally accepted definition of chaotic motions. In the case of system with 
one degree of freedom, it is possible to give a simple, geometrical definition of chaos although it is not 
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completely rigorous mathematically. In this case, the Hamiltonian of the system can be treated as the 
stream function of the flow of an incompressible medium. The Hamilton system (1.1) determines the 
motion of the Lagrangian particles of the medium. We will now introduce several concepts which are 
required in order to determine the chaos of Lagrangian particles in system with one degree of freedom. 

In the trajectory R{X(t, to, X0, Y0), Y(t, t 0, X0, Y0)}, which is determined from the solution of system 
(1.1), we consider the location of points after time intervals which are multiples of the period 1~ {X(tn, 
to, X0, Y0), Y(tn, to, X0, Y0)}, t, = to + Tn, n = 0, +1, +-2, .... The points are called Poincardpoints (PP). 
The set of PP is the track of a particle in the case of filming with a frequency of the motion picture 
frames corresponding to the period T. The PP form a denumerable set of points in a plane which, 
generally speaking, depends on to, ,go, Y0. If the set of PP belongs to a one-dimensional line, this line 
is called an invariant curve. In the case of ordered motion, all of the sets of PP form a family of invariant 
curves. In the hydrodynamic example considered below (in Section 9), this case is illustrated for the 
first four phase portraits of the PE In the second case, the set of PP occupies a two-dimensional domain. 
We shall call this case the chaotic motion of PP. Examples of calculations of chaotic motions are presented 
in the last six phase portraits of PP. 

In the case when the Hamiltonian depends periodically on time, the set of PP can be calculated using 
the recurrence formulae Rn = pr(Rnq), where P~(At = t - to) is a mapping of system (1.1) in the phase 
flow or simply the solution of problem (1.1). A mapping after a period, P~, is called a Poincar6 mapping. 

Note that the definition of chaotization which has been introduced is independent of t 0. Actually, 
when t o is changed to t o + At, 0 < At < T, the set of PP is transformed using the continuous mapping 
Pt~o. At the same time, the one-dimensional line or the two-dimensional domain transfer respectively 
into a one-dimensional line or a two-dimensional domain. If At = kT, that is, it is a multiple of the 
period, the mapping P~  = p~r transforms the set of PP into itself. In the case of an arbitrary value, At 
can be represented in the form At = kT + At', 0 < At' < T. The mappingP~ is identical to the mapping 
Pt0 ~' and does not change the topological structure of the PE 

Henceforth, to be specific, we will choose t o = 0 and we shall omit the subscript and superscript in 
the notation for a Poincar6 mapping: P = P0 r. 

The investigation of the chaotic state of motion using Poincar6 mappings is also called the method of Poincar6 
sections. The monographs [3-7] deal with this theme. However, the construction of a Poincar6 mapping itself is a 
complex computational problem. It is therefore usual to find PP numerically, and analytical methods for calculating 
PP are not used in hydrodynamic systems (with the exception of very simple, artificial examples [8]). 

The following theoretical results are useful in the qualitative investigation of systems with one degree 
of freedom with a Hamiltonian of the standard form 

H = eJ-/~ + E2H2 + E3H3 + ... (1.2) 

where e is a small parameter. It is well known that an autonomous Hamilton system (a Hamiltonian 
of which is explicitly independent of time) is integrable. Lagrangian particles lie on one-dimensional 
streamlines H(Xn, Yn) = const, and the motion is ordered. In the case of a non-autonomous system of 
standard form, the asymptotic procedure of the method of averaging in [9, 10] enables one to construct 
a canonical replacement of variables X, Y-+ X, Y which is close to an identical replacement for any 
integral k > 0 such that the_equations for the new variables have the form of an autonomous Hamilton 
system with Hamiltonian H(X, Y), with an accuracy up to small orders of ek+l. 

The Hamiltonian of the system can be reduced to the almost autonomous form H(X, Y) + p(t, X, Y) 
by a sequence of canonical substitutions. The theorem due to Neishtadt [11] establishes the existence 
of an unimprovable estimate [ p [ < Clexp(--C/e) for the case of non-integrable systems with an analytic 
Hamiltonian. When p = 0, the system has an integral and, in the case of one degree of freedom, it will 
not be chaotic. It is precisely the exponentially small quantity p(t, X, Y), which cannot be determined 
by methods of averaging, which causes chaos. The use of the method of averaging for a constructive 
description of the transition to chaotic motions is therefore found to be useless in system with one degree 
of freedom. However, the following typical pattern of the buildup of chaos as the parameter e increases 
can be qualitatively ascertained. For sufficiently small e, the sets of PP lie on the invariant curves 
H(Xn, II,) = const which are determined by methods of averaging with an accuracy up to p = Clexp(--C/e). 
In this case, chaos is barely noticeable, by virtue of the smallness of p. For a sufficient increase in e, 
the exponential contribution starts to manifest itself, the chaos becomes noticeable and the area of 
chaotization increases quite rapidly as e becomes larger. 

The origin of the chaos is usually associated with the existence of unstable fixed points of a Poincar6 
mapping [3-7]. A periodic solution with period T (with period kT) corresponds to a fixed point 
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P(R) = R (the point Pk(R) = R), The problem of the Lyapunov stability of the periodic solution reduces 
to solving the problem of the stability of a fixed point of the mapping. The method of Lyapunov exponents 
[5] is used to solve it. Since the analytic form of the mapping P is unknown, the Lyapunov exponents 
are determined numerically. It is shown below how the mapping P and the Lyapunov exponents can 
be found analytically in the form of an expansion in e, and in an actual hydrodynamic system with an 
accuracy up to e 5. 

It is an exceedingly difficult problem, even for a system with one degree of freedom, to prove that there is a 
state of chaos using any rigorous definition of chaos. Proofs of a state of chaos for certain simple mappings have 
been presented in [8]. A theorem due to Mel'nikov [5], which involves evaluating a fairly complex integral, is used 
to prove that there is a state of chaos in the case of Hamilton systems. A state of chaos of the motions of a 
mathematical pendulum with a vibrating suspension point can be proved analytically by Mel'nikov's method. In 
such a system, with a Hamiltonian which depends periodically on time, there is a separatrix, represented in a simple 
analytical form, which also enables this theorem to be used and enables the uncoupling of the separatrices to be 
established [2]. The verification of a state of chaos, using Mel'nikov's theorem or some other method, is usually 
only established by means of rather lengthy numerical methods. 

Several quite simple examples of the investigation of hydrodynamic systems using the numerical 
determination of the PP have been presented. There have been practically no investigations of the motion 
of a viscous fluid in a domain with a boundary which varies with time. One of these investigations [12] 
involved analysing the motion of particles of incompressible media with a different rheology in the thin 
deformed layer; conditions of zero tangential velocity were imposed on the boundaries of the layer. 
Numerical calculations showed that, in such a system, there was practically no chaos at low Reynolds 
numbers. 

An efficient parametric method for constructing mappings in the phase flow of a Hamilton system 
is proposed below. The advantages of the parametric method over the well-known method of generating 
functions are established in this case and demonstrated using examples. The asymptotic theory for 
describing the transition to chaotic motion, which has been developed, is used to analyse the more- 
general motion of a highly viscous fluid in a thin deformed layer, taking account of the tangential velocity 
on the boundary. An explanation of the numerical experiments, using the absence of chaos or zero 
tangential velocity on the boundaries, is given on the basis of the Poincar6 mapping which has been 
found. In the case of a tangential velocity on the boundary, chaos is possible at quite small amplitudes 
of deformation of the wave. 

2. EQUATIONS DEFINING A POINCARt~ MAPPING 

The method of  generating functions is used in the case of canonical transformations [1, 2]. The same 
method can be used to construct Poincar6 mappings. For simplicity, we will consider the Cauchy problem 
(1.1) for a system with one degree of freedom (although, it is easy to extend all the results to the case 
of a system with n degrees of freedom). The mapping Xo, Ito ~ X, Y, which conserves the phase space, 
is represented in terms of a differentiable function of mixed variables of the form XoY + S(t, Xo, Y) 
(the generating function) in the form of the relation 

When the condition 

X = Xo + as~bY, Yo = Y + as/aXo (2.1) 

1 + a2s/aXoaY > o (2.2) 

is satisfied, the system can be solved forXand Ywhich, as a result, gives a representation of a mapping 
with a Jacobian that is equal to unity for any function S. If the generating function S is determined 
from the Hamilton-Jacobi equation 

s,(t, Xo, Y) = n(t, Xo + Sy(t, Xo, r), Y), S(O, Xo, Y) = 0 (2.3) 

then the mapping (2.1) will be a solution of the Hamilton system (1.1). 
In the case of a system of the standard form (1.2), the function S is represented by a series in powers 

of e. Any finite number of terms of the expansion will define a mapping for which the phase space will 
be exactly conserved. The convenience of the use of the method of generating functions lies in this fact. 
However, there areserious drawbacks in this method. We shall indicate two of them (see the example 
of a harmonic oscillator below). 
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1. Mappings of the'type (2.10) are not universal (for example, a rotation through 90 ° is not representable 
in the form of (2.1); for such a mapping, another pair of variables has to be chosen in the generating 
function, but it is then impossible to represent the identity transformations in these variables [1, 2]). 

2. The solvability condition considerably restricts the range of variation of the parameter e. In addition, 
condition (2.2) is not invariant under a transformation of a rotation of the Cartesian coordinates in the 
phase plane [2]. 

A new scheme for the parametric representation of a mapping is proposed which is free from these 
drawbacks. A similar, but non-parametric, method for constructing a generating function was proposed 
previously [2, p. 342]. 

The parametric method. We shall seek a mapping Ro ---) R, with a Jacobian equal to unity, in the 
parametric form R = R(t, r), Ro = R(t, r), where r, Ro and R are two-dimensional vectors, Ro = R(0) 
is the starting point of the trajectory, R is the point of the trajectory at the instant of time t and r is a 
certain vector-parameter. The general form of this mapping is 

l l a q ,  a~t , aw ]wx] (2.4) R ° = r - 2  ~ r '  R = r + l l a r '  ar = ~'r 

where 

R= r= , I= -E0" 

(I is a symplectic matrix and E is the identity matrix). 
The mapping R0 ~ R is obtained if the first equation of (2.4) is solved for the parameter r and the 

relation r(R0) is then substituted into the second equation. The Jacobians of the two mappings (2.4) 
are equal to the one and the same function 

JC,,, --dot --det -- l+ oet{ ) (2.6) 

The Jacobian of the superposition of the mappings R0 ~ r ~ R is therefore identically equal to unity. 
The mapping (2.4) is an analogue of (2.1) and condition (2.2) is replaced by the condition J > 0. 

In order that the mapping (2.4) should represent the solution of the Cauchy problem (1.1) in the 
case of Hamilton's equations, the function q' must satisfy an analogue of the Hamilton-Jacobi equation 
(2.3) 

3~PbtL- = H(t ,r  + li0W~r) ~(0,r)  = 0 (2.7) 

To be specific, it is henceforth assumed that t o = 0. 
For a system with one degree of freedom in coordinate form, the mapping (2.4) has the form 

1 X o = x - l ~ y ,  Yo=y+lulx; X = x + l ~ y ,  Y=y-~Wx  (2.8) 

This parametric form of a mapping with a Jacobian equal to unity was derived in [13] with a reference 
to the work of Scheffers. 

Correspondingly, Eq. (2.7) for the function ~(t, x, y) is written as 

a v  . ( l a v  1 ] x,y) = o at. = t-t( t, x + -~ ~y , y - ~--~ ), (2.9) 

Formulae (2.8) and (2.9) are easily extended to systems with n degrees of freedom. In order to do this, 
it is sufficient to replace the parametersx andy in them with the vector-parameters x and y. These results 
are the basis of the asymptotic method for obtaining Poincar6 mappings. We will now formulate them 
in the form of a theorem. 
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Theorem 1. The mapping (2.4) is a solution of problem (1.1) if and only if the function T is a solution 
of problem (2.7). 

Theorem 1 is a special case of a more general theorem on the parametrization of canonical 
transformations, which we shall prove below. 

3. THE P A R A M E T R I C  F O R M  OF C A N O N I C A L  T R A N S F O R M A T I O N S  

The following theorem holds for the more general result of the parametrization of the canonical 
replacement of variables in Hamilton systems. 

Theorem 2. Suppose the transformation of the variables is written in the parametric form 

Q = x + l t p y  I 

Then 
(1) the Jacobians of the two transformations q = q(t, x, y), p = p(t, x, y) and Q = Q(t, x, y), P = 

P(t, x, y) are identically equal: 

3(q, p) = 3(Q, P) = J(t, x, y) (3.2) 
~(x,y) ~(x,y) 

(2) when J > 0 j ransformat ion  (3.1) of the variables q, p ~ Q, P will be canonical, translating the 
Hamilton system H = H(t, q, p) into the Hamilton system H = H(t, Q, P), if the function te is determined 
from the equation 

~t (t, x, y) +/7/(t, q, p) = n(t, Q, P) (3.3) 

where the arguments q, p and Q, P in the Hamiltonians H and/~ are expressed in terms of the parameters 
x, y in accordance with (3.1). 

We will now prove Assertion 2 using the canonical property criterion, according to which the differential 
form SF = PSQ - p~xl - (H - H)6t is a complete differential of a certain function ~F(t, x, y) = Ft6t + 
Fx$x + FySy [1]. 

Instead of q, p, Q, P, we substitute their expressions (3.1) in terms of the parameters x and y into 
the differential form 8F and replace H - H in terms of Vt in accordance with Eq. (3.3). After obvious 
algebra, we obtain 

SF = (y - 12 W, )(Sx + 12 " u/'t6t + 12,W.xSx + 1 Wrj$y ) _ 

_(y + 1 +x )($x - _.1 +.,$t - i +.x$ x _ 1 WyySy) - +,$t = 
2 ~ 2 : 2 

= y(~tytSf + +yx~ x + ~tyy~y) _ ~tx~ x _ +tSt = ~(y+y _ + )  

which it was required to prove. 
Assertion 1 follows from the fact that, in the case of a canonical substitution, the Jacobian is identically 

equal to unity ~(Q, P)/~(q, p) = 1. 
Here, q, p, Q, P, x, y are understood as being n-dimensional vectors. Hence, the method of canonical 

substitutions which has been described refers to Hamilton systems of arbitrary order n. 
In the special case when H = 0, the variables q and p are transformed into the initial point q = Q(0), 

p = P(0) of the trajectory Q = Q(t), P = P(t) of a system with Hamiltonian H(t, Q, P). Hence, Theorem 
1 is also proved. 

4. AN A S Y M P T O T I C  M E T H O D  FOR D E T E R M I N I N G  
A POINCARI~ M A P P I N G  

Suppose the Hamiltonian of a system of standard form is represented in the form of the power series 
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(1.2). The solution of Eq. (2.7) with a null initial condition is then represented in the form of a series 
in powers of e 

= I ~  1 + 1~2t[/2 -t-E3V~ 3 + . . . .  (4.1) 

In order to calculate the coefficients of this series, we substitute expansion (4.1) into the right-hand 
side of Eq. (2.7) and expand it in a series in powers of e 

H(t,x +ItF"y-lIFx'e)= e J ' / ' 2  " 2 +e2["2-I{H"~F'}]+e3[Hs-I({"2'~FI}+{H"W2})+ 

+ 1 (Hixx~F, yWly - 2HlxyW, x~Fly + HlyyWlx~lx)] +. . .  

The derivatives of Tn are then determined as the coefficients of the powers e n 

1 
holt = HI, ~2t = H2 -~{HI ,~I}  

W3, = H 3 -~({H 2, V,} + {H l, ~P2 }) + -~ (H,x~V, yW, y - 2 H, xyV,.tY,. + H,.V, xW, x ) .... (4.2) 

Hence, by integration with respect to t, taking account of the conditions q~n = 0 when t = 0, the 
coefficients of series (4.1) are expressed in terms of the specified coefficients of series (1.2). In the case 
of a Poincar6 mapping after a period T, we obtain, up to third-order infinitesimals 

'[ ( ! 1)] W = S eHl(t ,x,y)+~ 2 H2(t ,x ,y)-  Hl(t,x,y), Hl(t',x,y)dt" dt 
0 

(4.3) 

({f, h} = fyhx - fxhy is a Poisson bracket). 
Formula (4.3) can be written more briefly in the form 

~F=J H(t,x,y)- H(t,x,y), H(t',x,y)dt" dt +O(g 3) 
0 

The convergence of series (4.1) is proved by the majorant method in the same way as for a general 
system of differential equations of standard form [14]. A Poincar6 mapping is therefore an analytic 
function with respect to the parameter ~. This is also in accord with a known theorem concerning the 
analyticity of the solution of a differential equation in a parameter. 

5. A POINCARI~ M A P P I N G  FOR A U T O N O M O U S  H A M I L T O N  SYSTEMS 

The procedure for expanding the function ~t' in a power series is simplified considerably in the case of 
an autonomous Hamilton system with Hamiltonian H(X, Y). 

It can be shown that the solution of Eq. (2.7) is an odd function with respect to the argument t. 

Actually, the integral H(R(t)) = H(R0) holds in the case of an autonomous Hamilton system. Suppose ~(t, x, y) 
is the solution of (2.7). Then, according to the theorem proved above 

. r+½, -- 
,: z or 2 Or' k 2 0 r )  

for any real t. Next, on making the substitution t = -z, q' = -CF in Eq. (2.7), we have 

-ff  t, - - i  - f f /  ) = n r+½1 , 'i'(0,r)=0 

The resulting boundary-value problem is identical to the initial problem (2.7). By virtue of uniqueness, we conclude 
that W(t, x, y) = -~(-t,  x, y). 
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The property which has been established can be used to simplify the calculation of the series for the 
function 't' in the case of a Hamiltonian of standard form (1.2). To do this, we formally write the 
Hamiltonian in the form 

H -- E/-I(X,Y,~I), /~ -- H I +glH2 + E:I2H3 +... 

When e I = E, this Hamiltonian is identical to the initial Hamiltonian. According to the property which 
has been proved, the solution of (2.7), when el = const, can be represented by a series in odd powers 
of et 

v = fu) ' iq + (u)s q'3 + (et)5'~5 +. . .  (5.1) 

The coefficients of this series ~'n(x, y, el) are calculated from Eq. (2.7) much more simply than in the 
non-autonomous case. Thus, in order to obtain the expansion to terms of the order Of (et) 5 infinitesimals, 
it is only necessary to calculate two coefficients and not the four coefficients required in the general 
case, that is 

v --(,.t)&x, )+ - 2 & , &  + ]+ (5.2) 

In order to obtain the final expansion in powers of e, it is necessary to put e = el and to substitute the 
series 

/ t ( X , Y , e )  = H I +¢2-/2 + e 2 H  3 + . . .  

into expression (5.2). 
Since a non-autonomous Hamilton system can be reduced to an autonomous Hamilton system with 

an increase in the number of degrees of freedom of one [1], the procedure for obtaining the Poincar6 
mapping in the case of a general non-autonomous system can be reduced to the procedure which has 
been described for an autonomous system. The considerable simplifications in the case of an autonomous 
system can be used to obtain a power series with a large number of terms with fewer operations. Thus, 
by using an analogue of formula (5.2), we obtain a mapping which is more accurate by two orders of 
magnitude than formula (4.3). 

6. THE AVERAGING P R O C E D U R E  

The averaging procedure using generating functions has been described earlier [9]. For a Hamiltonian 
which is periodic with respect to time the parametric method enables one to construct an averaged 
Hamiltonian no less effectively. Examples of such calculations up to terms of the order of E 3 have been 
given in [15, 12, 16]. 

We will now present a general procedure for constructing the asymptotic series of the averaged 
Hamiltonian 

H(X, ¥, O = aZ + ~2H2 + s3H3 +... (6.1) 

using the parametric method. 
Suppose the initial Hamiltonian is periodic with respect to time with period T and that it is represented 

by series (1.2) with known coefficients. Then, the coefficients of series (4.1) for the function ~(t, x, y) 
can be successively calculated using formulae (4.2). We shall therefore assume that series (4.1) is known. 

Next, it is necessary to solve the following equation 

• , = ~ x + l ~ . , y - - I  ~ , , e~  ~(O,x,y,e) --- 0 
2 ~ 2 f 

(6.2) 

~F(T, x,y,~)- ~(T, ~+I x,y,g)=O(g ) (6.3) 

where ~(t, x, y, ~) is the Poincar6 mapping of the initial system and ~F(t, x, y, e) is the Poincar6 mapping 
corresponding to a system with Hamiltonian H(x, y, e). Equation (6.2) connects the mapping function 
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D m 

T(t, x, y, e) and the Hamiltonian H generating this mapping. Equation (6.3) means that the locations 
of the PP of the initial and averaged systems are identical up to terms of the order of e k+ 1 after a period. 

Taking account of (6.1), we can write the right-hand side of Eq. (6.2) ih the form 

g ( x , v , o  = R = + . . .  

Then, according to expansions (5.1) and (5.2), the solution of Eq. (6.2) will have the form 

• (t, x, y, e) = (8t)~ l + (8t) 3 ~3 + (805 % +... 

=/7/(x, Y, el ), ~3 = I (#xx/'ly/7/y - 2Hxynx H, +/~y,/~,/~,) .... q'l 
0 - -  

(6.4) 

We will find the coefficients of the asymptotic series of the averaged Hamiltonian (6.1) from equality 
(6.3), with an accuracy specified in advance. For example, the averaged Hamiltonian, multiplied by the 
period T, and the mapping function are identical up to terms of the order of ~3 

T/q(X,Y,e) = ~F(T,X,Y,e) (6.5) 

(There is no such simple relation in this approximation in the case of a generating function.) 
On taking account of expression (4.3), we obtain the well-known formula for the averaged Hamiltonian 

in this approximation from equality (6.5) [9] 

~ = I ~ = T  H--~ H, Hdt +O(e 3) (6.6) 

where the angular brackets denote averaging over the period. 
There will be similar simplifications in the higher approximations. The coefficients of the series of 

the averaged Hamiltonian are obtained up to terms of the order of e 5 from the equalities W(T, x, y) = 
3 (eT)Ct'l + (eT) I'3 and (6.4). Hence, it is easy to obtain the coefficients in this approximation 

_ I w  1 
H'~ - "~ i, H2 = ~ W2 (6.7) 

The parametric method is therefore more effective than the method of generating functions [9] for 
calculating the coefficients of the asymptotic expansions of an averaged Hamiltonian. 

7. THE MAPPING OF A SMALL DOMAIN 

We shall assume that the Hamiltonian H(t, X, Y, e) is a continuously, doubly differentiable function of 
the coordinates X and Y. As a function of time, the Hamiltonian has a period T. The coordinates X(t) 
and Y(t) vary in a certain compact domain. 

According to the theory of finite deformations [17], the matrix A = ~R/0R0 (R -- (X, Y)) defines the 
mapping of a small neighbourhood of the point R0 = (X0, Y0). Using the mapping (2.7), the matrixA 
can be expressed in terms of the derivatives of the mapping function q' = ~F(T, x, y, e). 

According to representation (2.4), the matrixA is equal to the product of the inverse of the mapping 
matrix r ~ R0 and the mapping matrix r ~ R (r = (x, y)) 

A=A-IA+; A t =Erl:l l ~2~ 
- 2 OR 2 

Using the identityA -1 = A+/J, the matrixA can be represented in the form 
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I1-, *,,Ill A =  ( 2 - J ) E +  -W*x -Wxy (7.1) 

where J is the Jacobian defined by formula (2.6). 
We will now carry out a further study of the local mapping for two-dimensional domains (X0, Y0) ---) 

(X, Y). We will express the components of the local mapping matrix in terms of the second derivatives 
of the function T and, for comparison, in terms of the second derivatives of the generating function, 
representing this mapping in the form of (2.1) 

2 - J Wxy (1 + Sxr)2 _ SxxSrr 
All = + = 

J J 1 +Sxr 

~yy_  Srr , A21 ~x~_ Sxx (7.2) 
Al2 = j l+Sxr = -  J l+Sxr 

2 -  J Wxy l 
A22 = J J 1 + Sxr 

The mapping of a small neighbourhood (82(0, 6I"0) ~ (fiX, ~SY) with a matrixA has two independent 
invariants with respect to rotations of the system of coordinates 

11 =Alj +A22, 12 = A i  2 -A21 

In the case of the parametric mappingJ and A~ = ~x~ + ~yy are also invariants since they are expressed 
in terms of the invariants 11 and 12 

j = ~  4 AW = 412 
2 '  I I + 11 + 2 

Hence, the condition J > 0 for the existence of a parametric mapping is invariant and it can be 
represented in the form I1 + 2 > 0. 

We will now show that the condition for the existence of a mapping (2.2) with an arbitrary function 
1 + So,  > 0 is not invariant. In fact, as a consequence of the last relation of (7.2), this condition can 
be represented in the form A22 > 0. The satisfaction of this condition depends on the choice of the 
system of coordinates. In the system of coordinates X', Y', rotated by an angle 0, this condition is 

l (Al l  + A22) - 21- (Ajl - A22)cos20 + 1 (AI2 + A21 )sin 20 > 0 

There will always be a dependence on the angle 0, apart from the case when (All - A 2 2 )  2 + (A12 - 
A21) 2 = 0 or I 2 + 122 = 4. 

The invariance of the condition for the existence of a parametric mapping is the first important 
advantage over a classical mapping with a generating function. 

If the parametric mapping and mapping (2.1) are calculated with the same asymptotic accuracy, the 
domain of existence of the parametric mapping is much wider than the domain of existence of mapping 
(2.1). This second advantage of the parametric mapping will be demonstrated below using real examples. 

The characteristic factor m, which determines the nature of the stability of a fixed point, is a root of 
the characteristic polynomial m 2 - I l m  + 1 = 0 and depends solely on I 1 or J(I1). It is well known that 
the instability of a fixed point is one of the important conditions for a transition to chaos. The invariant 
I1 and J(Ii), which depends on it, therefore plays a fundamental role in the investigation of the transition 
to a state of chaos in the case of two-dimensional mappings. 

We will now distinguish the degenerate case 

l T (n,)=7! n dt =0 

from a system of the standard form (1.2). In this case, formula (4.3), written up to terms in E 3, is simplified 
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and the invariant J is determined using formula (2.6) up to terms of the fifth order in E 

J = l + - + 5 )  

Consequently, m is also determined with this accuracy. In this case, the parametric mapping is calculated 
more simply and, moreover, it enables one to investigate the stability of a fixed point of the mapping 
with a higher accuracy and to describe the transition to a chaotic state, as is shown below in the 
hydrodynamic example. 

According to a theorem on polar expansion, which is well known in analytical geometry, the matrix 
A can always be represented in the form of the sum of a rotation matrix and a symmetric matrix. In its 
turn, the symmetric matrix can be brought to the principal axes by means of a rotation of the system 
of coordinates. Hence, we obtain 

H" °11 aoos  -si° n  73, 
A=C(Ip)C(~°) 0 l 2 C(-q)°)' /I/2=1' C(~)= sin9 cosgl l  

The mapping fix = AfiX0 transforms the unit circle into an ellipse of the same area with axes 11, 12. The 
angle (P0 determines the direction of the filament in the circle 18x01 -- 1 which is lengthened to the 
greatest extent during the transformation. The angle q0 defines the rotation of this filament (Fig. 1). 
Using relations (7.1) and (7.3), all the above-mentioned characteristics of the mapping can be expressed 
in terms of the elements of the Hessian matrix qJ~, qJ~y, q'yy. 

The greatest and the smallest extensions of the filaments are 

t, (7.4) 

R 2 =4~((2_J)2+(~Fxx + Wyy)2)+l 

We present the expressions for the angles ~ and q00 

A21 -.Al2 AI2 + A21 
tg ~ = Aj 1 + '422 tg(tp + 2~0) = ' AN - A22 

The characteristics 11, (P, rnl, ~.1 which have been written out above are also invariants and are expressed 
in terms of the two basic invariants. The angle q00 is an invariant and depends on the choice of the axes 
of the coordinates &¥, BY. 

8. THE ADVANTAGES OF THE P A R A M E T R I C  M A P P I N G  

In the parametric method, the function qJ(t, x, y) plays the role of a generating function. As in the method 
of generating functions, q'(t, x, y) is determined from an equation of the Hamilton-Jacobi type. Any 
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finite sum of the first terms of the series in e for • will give a mapping which exactly conserves the 
phase space, subject to the condition that J > 1. 

However, a number of advantages of the parametric method over the method of generating functions 
was noted above. They consist of the following. 

1. It is impossible to express mappings of a very simple form in terms of a generating function. For 
example, it is impossible to express a rotation by 90 ° (the mapping X = Y0, Y = -X0) in terms of 
S(Xo, Y). This mapping can be expressed in terms of a mapping function with another pair of variables, 
but it is then impossible to represent the identity mapping in terms of it. In this sense, the parametric 
representation is universal. For the identity transformation V = 0 and, for a rotation by 90 °, 
1 + i)2S/3XoOY > O. 

2. The condition of solvability (2.2), generally speaking, depends on the choice of the Cartesian system 
of coordinates X and Y, whereas in the parametric method, the condition J > 0 is invariant under 
rotations of the X and Y axes. 

3. In approximations of the same accuracy with respect to the small parameter e, the range of variation 
of the parameter e, which satisfies the condition J > O, is much wider compared with the range of variation 
of the parameter e which satisfies the condition 1 + O2S/OXoOY > O. 

4. The coefficients ~Pn of the series u /=  eq~l + E2~tJ 2 + . . .  are considerably smaller than the coefficients 
of the series Sn for the generating function. 

5. In the case of an autonomous system, the function • is represented by a series in odd powers of e. 
6. A mapping after a time t and the averaged Hamiltonian are connected, up to terms of the order 

of E 3, by the relation W = TH(x, y). 
We will now demonstrate the advantages of the parametric method in an example in which the 

mapping is found exactly. 

The forced vibrations o f  an oscillator. The Hamiltonian has the form 

H =  £[2(X2 + Y2)+ Xbsin(t o +t)] 

The system of equations is integrated exactly and the coordinates An, Yn of the points of succession 
over a period at the instants of time t~ = 2nn are 

Xn - Xc = (Xn-i - Xc)cos(2r~)+ (Yn-i - Yc)sin(2r~) 

Yn - Y~ = - (X~-i - Xc)sin(2rtt) + (Y~-1 - Yc)cos(2r~) 

be 2 be 
Xc=l_-_-_-_-_-_-_-_-_-'~sinto, Yc = i _ - -~cos t0  

The points of succession lie on a circle with its centre at Xc, Yc with an angular distance from one another 
of 2roe. 

The parametric method gives 

tP(x,y) = t g ~ ( x  - Xc) 2 +(y - Yc)2 ], J = 1 / cos2(r,~) > 0 

According to the method of generating functions, we have 

1 - c o s  21r~ 
s(x0,  Y) = 

c o s  2roe 

1 l+Sxy = ~ > 0  
cos  2 ~  

(X o - Xc)(Y- Yc) + I tg 2r~.[(Xo - X~) 2 +(Y- Yc) 2 ] 

It is clear from the above example that: 
(a) the formula for ~P is shorter than that for S; 
(b) the radii of convergence of the series in powers of ~ for q" are twice as great as the radii of convergence 
of the series for S (rotations of up to 180" are permitted in the parametric method but only up to 90* 
in the method of generating functions); 
(c) the coefficients of the series ~Pn are approximately 2 n times less than the coefficients of S~ and, 
correspondingly, for the residual terms of these series r~ and R~, we have r~ - 2-"Rn. 

All of advantages 1--6 are easily verified. 
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The example, presented below, is a rather complex hydrodynamic system in which the transition to 
dynamic chaos for sufficiently high values of the parameter is successfully described by the parametric 
method. It is shown that, in this domain of parameters, the classical method of constructing Poincar6 
mappings is fundamentally inapplicable. 

9. THE M O T I O N  OF THE P A R T I C L E S  OF 
A V I S C O U S  F L U I D  IN A T H I N  L A Y E R  

A slow plane-parallel flow of an incompressible viscous fluid in a thin layer is considered. This layer is 
bounded by a flat bottom Y = 0, rectilinear side walls X = 0, X = 2n and an upper boundary which is 
deformed according to a specified periodic law Y = 1 + eh(t, X). A no-slip condition is assumed on 
the lower boundary Y = 0, a non-permeability condition vy = e~h/Ot + vxOh/Ox is imposed on the upper 
boundary, and a condition is imposed on the tangential component Vx = 3e2tx(1 - cos x) (Fig. 2). The 
flow rate on the side walls is equal to zero. This problem has been studied previously in [12] for 

= 0. The Hamiltonian of the system (the stream function) in the thin-layer approximation is defined 
in the same way as in [12]. 

H(t, X, Y) = g q ( 3 Y  2 - 2~ '3) - 3E20~(Y 2 - Y 3 ) ( I  - c o s  X )  (9.1) 

Oh / 0t + Oq / OX = 0, q(0) = q(2g) = 0 

= YI(I + F.h(t, X)) 

Here X and Y are dimensionless coordinates, the coordinate X/(2n) is divided by the length of the layer 
and the coordinate Y is divided by its thickness. The dimensionless function for the flow rate eq(t, X )  
across a section X = const is expressed in terms of the function for the deformation of the layer eh 
using the equation for the conservation of mass. 

The motion of the fluid particles is determined from the solution of a system of Hamilton equations 
with Hamiltonian (9.1). Investigation of the system when ct -- 0 [12] showed that there is no transition 
to chaos up to e < 0.8. 

If terms of the order of e 2 of the velocity Vx on the boundary are taken into account qualitative changes 
occur in the motion of the fluid particles. 

In order to investigate the system. It is convenient to use the canonical substitution 

x,r,H(t,x,r)-o ~,~,~(t,~,~') 
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with generating function 
X 

S(t, X, ~') = XY + e~'~ h(t, X)dX 
0 

The variables and the Hamiltonian then become 

~f = ~S = X+E~ h(t,X)dX, Y 3S c)"-f 0 = -~- = Y(1 + i~h(t, X)) 

H(t,~(,Y) = H+~ S /3 t  = n-v.q~" 

The convenience of this substitution lies in the fact that, in the variable X, Y, the system has the 
Hamiltonian form and the domain of the variables is a fixed rectangle ) (  ~ (0, 2n), ~" ~ (0, 1) (Fig. 3). 

The system can be investigated analytically in the case of a general deformation law. The mapping 
function can be calculated up to terms of the order of e3 using formulae (4.3) 

W(x,y) = 6n~.212(qh)(2y - 1)(1 - y)2y2 _ ~(1 - y)y2(1 - cos x)] (9.2) 

where q is found from the equation of conservation of mass 

Oh / bt + Oq / OX = 0, q(0) = q(27t) = 0 

The equalities 

I h, hdX = -  h htdX =J hqdt 
0 0 0 

are used in deriving formula (9.2). 
We shall confine ourselves to investigating a special case of deformation using the law for a travelling 

wave h = s in (X-  t). From the equation of conservation of mass, we calculate 

2x 
q = sin(X - t) + sin t, (qh) = ~ I qhdt = 1 (1 - cos X) 

Z ~  0 2 

and, substituting this into expression (9.2), we obtain 

W(x, y) = 6rte2F(y, a)(l  - cos X) 

F(y,a) = ( 2 y -  1)(1 - y)Zy2 _ ~(1 - y)y2 

J = I + 9~ 2~4 [ F(y, ot)F"(y, oO cos x(1 - cos x) - (F'(y, or) sin x) 2 ] > 0 

(9.3) 

The variables x and y occupy a region of the same rectangle x ~ (0, 2x), y ~ (0, 1). Hence, a two-parameter 
family of mappings is obtained for the initial system. 

If ~ < 0.236, the Jacobian J attains the minimum value when cos X = -1, and if ct > 0.236, it attains 
the minimum value when cos X = 0. Hence, the domain of applicability of transformation (9.3) is 

rain J = 1 - 9/~2~ 4 max(2F(y, ct)F"(y,a)) > 0 when ~t < 0.236 

min J = 1 - 992E 4 max(F'(y, ix)) 2 = 1 - 9/1;2E4~ 2 > 0 when ot > 0.236 

Investigation of the function F'(y, ~) at the maximum shows that, when ~ ~ (._oo, _1/2 ) w (l/s, oo), the 
function ]F'(y, tx)l attains its greatest value, equal to c~, on the boundary y = 1. In the case of 
the remaining c~, the function IF'(y, c0] attains the greatest value in the intervaly e (0, 1). 

The domain rain J > 0 in the plane of the parameters (ct, e) is shown in Fig. 4. The boundary is defined 
by the equation rain J = O(e, ~x) = 0 and it is a piecewise-smooth line. 

For comparison, we present the asymptotic mapping formulae obtained using the method of 
generating functions in the same approximation as in (9.3). The mapping will be determined using 
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formulae (2,1) with the function S(X0, Y) = ~(X0, Y), where the function qJ is the same as in (9.3). 
The condition for the transformation to be applicable is 

rain(1 + ~xoY) = 1 + 6r~ z min(F'(Y, a))sinX0) > 0 = 1 -  6~E 2 max IF(Y, a)[ > 0 

When a ~ (--~, -1/2) u (1/8, o~), we obtain 6~e21~[ < 1. The boundary of the domain, determined using 
the method of generating functions, is shown in Fig. 4 by the dashed line. It is also calculated analytically. 
This is shown by the piecewise-smooth line which lies considerably below the boundary of existence of 
the parametric mapping rain J = 0. 

Up to a chaotic state (e < eo(Ct), E00x) is the critical value of the parameter e), the phase portraits 
of the PP are easily investigated using the averaged Hamiltonian 

= 3e2F(Y, o¢)(1 - cos  X) + O(e 3) 

calculated using formulae (6.6) and (9.3). 
The PP lie on the invariant curves F(Y, ~x)(1 - cosX) = const. The phase portraits of the PP have 

the five topologically different structures shown in Fig. 5. 
Structure 1, when cx ~ (--~, -1), is an anticlockwise motion along closed trajectories with a single 

fixed point. 
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Structure 2, when ct ~ (-1, 0), is two domains of motion separated by the separatrix y = 
3/4 - 4 T : - ~ / 4 ,  which is shown in Fig. 5 by the dashed line. In the upper domain there is anticlockwise 
motion along trajectories with a single fixed point. In the lower domain, there is clockwise motion along 
trajectories with a single fixed point. 

1 Structure 3_3, w when ~ ~ (0, /8), consists of three domains of motions separated by the two separatrices 
y = 3/4 _+ ~ L - - ~ / 4 ,  which are shown by the dashed lines in Fig. 5. In the upper and lower domains, 
there is clockwise motion along trajectories with a single fixed point in each domain, In the middle 
domain, there is anticlockwise motion along trajectories with a single fixed point. 

Structure 4, when cx ~ (1/8, 0.205), is a motion in three domains separated by separatrices. This is a 
unique case in which there is a fixed point of hyperbolic type corresponding to an unstable periodic 
trajectory. All the remaining fixed points in this and other cases correspond to stable periodic trajectories. 

Structure 5, when cx ~ (0.205, oo), is a clockwise motion along closed trajectories with a single fixed 
point. 

When e < e0(a), the PP found by direct solution of Hamilton's equations with Hamiltonian (9.1) 
move along trajectories, the topology of which corresponds to one of the five structures enumerated 
above. The type of structure is determined by the range in which the parameter a lies, 

When the critical value of the parameter e is exceeded, PP with the one and the same initial location 
can occupy a certain domain of the area Si. We shall call the set of these domains the domain of  chaotic 
motion. It has an area S = Y_,Sj. We will now stipulate that the ratio o = S/So, where So is the area of 
the whole domain of motion, is considered as a measure of chaos. Domains of chaotic motion with a 
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different measure of chaos are shown in Fig. 4 in the domain of the parameters e, a. The domain with 
a measure of chaos in the range (1/4, 1/2) is marked by the oblique hatching, the domain with a measure 
of chaos in the range (1/2, 3/4) is marked by the horizontal lines, the domain with a measure of chaos in 
the range greater than 3/4 is shown by the points and, finally, the smooth background corresponds to a 
domain with a measure of chaos of less than 1/4. 

Calculation of the PP by the method of mappings (P) with the function (9.3) in the domain of existence 
of the mapping J > 0 is indistinguishable from the calculation of Hamilton's equations using the 
Runge-Kutta (R-K) method. 

Examples of calculations are shown in Figs 6--8 for different values of e and o~. The initial positions 
of the points are denoted by asterisks. Their positions in a flow of 500 periods are shown by points. 

Calculations of the position of the PP up to the transition to chaos are shown in Fig. 6. The topological 
structure of the PP in Fig. 6 corresponds to topological structure 4 (a ~ (l/s, 0.205)) (the upper part 
of Fi~. 6) and to structure 3 (c~ ~ (0, 1/8)) (the lower part). In the lower part of Fig. 6, the separatrices 

= /4 - qT-Z-~/4 are shown by the dashed lines. 
An example of calculations near the transition to chaos is shown in Fig. 7. All the notation is the 

same as in Fig. 6. The topological structure of the Poincar6 points corresponds to the case when 
ot > 0.205. Both figures demonstrate the good agreement between the calculation using the parametric 
method and direct numerical calculation of the initial differential equations while, in the case of these 
values of the parameters a and e, the asymptotic formulae according to the method of generating 
functions fall outside the limits of their applicability domain. 
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Numerical calculations of PP, when the measure of chaos exceeds 3/4, are shown in Fig. 8. This domain 
of parameters lies outside of the applicability domain of mapping with the function (9.3). For these 
values of the parameters, it is necessary to use a parametric mapping in the next approximation. In this 
domain of parameters, it is impossible to obtain a mapping by the method of generating functions in 
any approximation since, in the neighbourhood of the fixed point, the PP perform a complete rotation 
in less than after four periods in this case. 

The example considered demonstrates the possibility of giving an analytical description of the 
transition to chaos in quite complex hydrodynamic systems. The parametric method of constructing 
the Poincar6 mapping turns out to be particularly useful in problems with many parameters. The 
mappings calculated by this method have an acceptable accuracy even in the range of parameters when 
it is fundamentally impossible to obtain a Poincar6 mapping using the classical method. 
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